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PREDICTION OF CHANGEOVER PERFORMANCE:

OPERATIONAL TEST (OT) PARAMETERS FROM

DEVELOPMENTAL TEST (DT) PARAMETERS

VIA META-ANALYSIS

Donald P. Gaver

Patricia A. Jacobs

Arthur Fries

1. Introduction

This paper sketches and examines some analytical statistical concepts and

methodologies that should usefully inform and sharpen the process of

military test and evaluation decisionmaking. The concepts generally fall into

the broad category of combining information (CI) or meta-analysis. See Gaver

et al. (1992) for examples and references. The term CI does not mean blindly

simplistic and uncritical data pooling across either time or the different

systems under evaluation. CI in test and evaluation would encourage and

systematize quantitative descriptions and comparisons between systems'

capabilities and limitations, over time and across comparable systems. It refers

to explicit processes whereby judgments, experience and expertise, and data

from previous and current military acquisitions, are systematically,

transparently, and critically brought to bear on data-taking and analysis for

either a particular current system acquisition, or on families of current and

future projects. It quantifies aspects of corporate memory.



The formalized CI process illustrated by the examples we provide has not

yet proceeded far in practice in any organized way because useful historical

data has not been identified, but requirements for more efficient T&E

decisionmaking encourage the future development of such approaches.

2. Combining Developmental and Operational Testing (DT and OT)

Reliability Data

Developmental Testing (DT) refers to the testing of a new or upgraded

system in the course of its technical engineering development. In general,

system DT is conducted by technical experts attentive to demonstration of its

engineering performance requirements. Operational Testing (OT) is

conducted later, and by operational military personnel; the objective is to

discover how the system is likely to behave in field operation and to uncover

faults and obstacles to such operation. Because of the rigors of field operation

there is the expectation that OT failure rates are likely to be higher than those

prevailing in DT. We sketch analytical models that can represent such

behavior in a quite economical or parsimonious way.

Model I: A Fixed Changeover Effect Multiplier

Suppose that Ji is the prior-to-changeover failure (or event) rate for

system i, and o~i is the corresponding post-changeover rate; i = 1, 2, ... , I.

Assume that before changeover system i fails in accordance with a Poisson

process, so, over operating (exposure) time xi, system i fails di (di = 0, 1, 2, ... )

times with probability e-8ixi (•iXi)di,; after changeover that same system fails

wi (wi = 0, 1, 2, ... ) times in operating time yi with probability e-iyi (i)Wi;
wi!"

this independently for i = 1, 2, ... , I; this is equivalent to assuming
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exponentially distributed times to/between system failures. It is assumed that

the data initially available are (di, xi, wi, yi, i = i, 2, ... ). Our objective is to use

these data to estimate any consistent change in rates (8i, oi) from prior- to

post-changeover, and to use the estimated relationship to anticipate, and

strengthen estimates of, the post-changeover rate of a new system. The

different analysis approaches used here depend on different ways of

characterizing an adjustment factor, ,; ic is first taken to be a constant in

Model I, applicable to all system changeovers. A subsequent setup, Model II,

allows the data to indicate the constancy of the relationship.

Suppose there are I different systems for which both DT and OT data are

available. Let Di be the number of failures experienced by system i during

developmental testing (DT) during an exposure time xi. Let Wi be the

number of failures experienced by that system during operational testing (OT)

during exposure time yi. Model I assumes that (Di} are independent Poisson

random variables with E[Di] = 81xi and {Wi} are independent Poisson random

variables with E[Wi] = inciyi; that is, Kc is an unknown constant in this model.

The log likelihood is, up to multiplication by irrelevant constants,

I

InL -= 48,i;data) = JJ-i+ di lnc5i - (K3iyi) + wi~ln+ln~i]ll. (2.1)
Hi=

dtSetting .g Ti 0, results in

di= di(2.2)
xi +k£Yi"(2)

Setting d= 0,
dic
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xwi
= i(2.3)

i

A recursive procedure to find the maximum likelihood estimates works; start

with 8i(O) = dj/xi. The approximate variance of k can be obtained from Fisher

information or by bootstrapping; details are omitted here, but see Gaver,

Jacobs and Fries (1997).

An important use of the estimate, k, is to project DT data for a new system

into the post-changeover OT phase. Suppose, for instance, that we compute

the isolated DT rate estimate for a new (the I + Ist) system, SI+1 = dI+l. Then a
XI +I

natural point estimate for the failure rate during OT could be

61+l = kI+1•

Using the obvious independence and asymptotic likelihood approximations

(Fisher information) the estimated standard error (se) of 6i1+1 can be

computed:

SE[&i+l]= IVar[k]Var[SI+l] + ,, ,,+ Var[2I+ [

S+1 a (E +l 2 1 ](dja+ll)(k[)2(24

j V a r[1k ] I dI+ l )+ V ar[k ] I_ + 
(2 .4)

XIIXI+l ,}•XI+1I+,1 .I+ A XI+ I

This can in turn be used to assign approximate standard errors to predicted

future OT performance, such as the probability that the future system will

exhibit no/zero failures during a test or mission time xI+l(m):

N{wVI+ 1 = O[WI+l1,XI+l(m)l = e-&I+1x'+¶(m). (2.5)
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Numerical Examples

Simulation was used to study the coverage properties of various

confidence intervals for estimates of Kc in Model I. In each replication 20

Poisson random numbers are generated having means 61xl, ... , 610x10,

81 Kyl, ... , 10oKylo, where ic= 4 and 6i, xi, yi appear in Table 1. This is a

simulated version of raw observational data.

TABLE 1

System 8i Xi Yi
Number DT Failure Rate DT Test Time OT Test Time

(hours) (hours)

1 0.0002 20,000 5000

2 0.0004 10,000 2500

3 0.0006 6,666.67 1666.67

4 0.0008 5000 1250

5 0.001 4000 1000

6 0.002 2000 500

7 0.004 1000 250

8 0.006 666.67 166.67

9 0.008 500 125

10 0.01 400 100

For each replication 7 types of confidence intervals for ic are calculated.

The first uses the MLE estimate of Kc and the asymptotic normal confidence

limits with observed Fisher information. The next three procedures use 2000

bootstrap replications where the bootstrap resampling is from Poissons with

means di, wi. One bootstrap confidence interval procedure uses the

percentiles of the bootstrap distribution. Another is a percentile-t procedure

with the observed Fisher information of the bootstrap sample being used to

estimate the standard error; (cf. DiCiccio and Efron (1996)). The third
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procedure uses the normal confidence interval procedure with the bootstrap

standard error. The last three confidence intervals are also obtained by

bootstrapping. However, in this case the 2000 bootstrap re-samples are drawn

as follows.

1. Obtain re-samples of pre-changeover (DT) data as random numbers from

the Poisson distribution with mean Sixi.

2. Obtain re-samples from post-changeover (OT) data as Poisson samples

with mean Ayi

where 8i and k are the original parameter estimates.

The three confidence interval methods are the percentile, the percentile-t,

and the normal confidence interval procedure with bootstrap standard error.

Table 2 displays the results of the simulations. Displayed are the number

of intervals that cover the true Kc = 4, and the mean and standard deviation of

the width of the intervals. The results of the simulation do not differ by

much for the different confidence interval procedures. Thus, for practical

purposes the convenient asymptotic confidence interval seems adequate.

Perhaps by luck the asymptotic interval not only covers as well as any, but is

also shorter and less variable.

Simulation is also used to study confidence intervals for the failure rate of

the post-changeover OT failure rate that is projected from DT data for a new

system, using k. In each replication, data is simulated using the model with

parameters in Table 1 with Kc = 4. In addition, the number of DT failures for an

1 1 th (the new) system is simulated by generating dil from a Poisson

distribution with mean 0.004 x 1,000 conditioned to be positive; that is, 11 =

0.004 and xli = 1000. The estimated DT failure rate of the 1 1 th system 11 =
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d11/xll where dli is the random number and 611=ks 1 1 where k is the

estimate obtained from the data generated for the 10 systems.

TABLE 2
Confidence Interval for jrStatistics

100 replications

Level 80% 90% 95%
Interval Proc. Coverage Width Coverage Width Coverage Width

Mean S.D. Mean S.D. Mean S.D.
Asymptotic 85 2.42 0.59 92 3.11 0.76 95 3.70 0.90
Normal
Bootstrap I (2000 Replications)

Normal B. 84 2.59 0.67 93 3.32 0.86 95 3.96 1.02
SE
Percentile 80 2.49 0.63 91 3.25 0.81 92 3.94 1.01
t-Percentile 82 2.45 0.60 91 3.17 0.75 92 3.80 0.90
Bootstrap 1I (2000 Replications)
Normal B. 86 2.59 0.68 92 3.32 0.87 95 3.96 1.08
SE
Percentile 80 2.48 0.63 91 3.24 0.83 93 3.94 1.03
t-Percentile 82 2.45 0.60 91 3.17 0.77 93 3.80 0.91

Bootstrap I: Di(b) - Poisson (di) Wi(b) - Poisson (wi)

Bootstrap II: Di (b) ~ Poisson (Sixi) WTh(b) - Poisson (Siky,)

For each replication 5 types of confidence intervals for the new system's

OT failure rate, ow11, are calculated. The first uses the MLE estimate of x, 311,

and the asymptotic estimate of standard error and normal percentiles; this

confidence interval is called the asymptotic normal interval. The next two

confidence intervals use 2000 bootstrap replications, where the bootstrap

resampling includes the additional random draw of d11(b) from a Poisson

distribution with mean d1j, the number of DT failures for the 1 1 th system.

The bth bootstrap estimate of co11 is cZ11(b)=k(b)du1(b)/x11. One bootstrap

confidence interval is constructed from the percentiles of the bootstrap

distribution of 6 11. The second procedure uses the normal confidence
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interval procedure with the mean and standard deviation of the bootstrap

estimates. The fourth and fifth confidence intervals are also bootstrap

confidence intervals but with the bootstrap samples for the first 10 systems

being drawn as follows: di(b) - Poisson mean Sixi and wi(b) - Poisson mean

kSiYi. The fourth confidence interval uses the percentiles of the bootstrap

distribution of o)11 and the fifth uses the mean and standard deviation of the

bootstrap distribution and standard normal percentiles. The results appear in

Table 3. Displayed are the number of intervals (out of the 100) that cover the

true value of w11 = 0.016 and the mean and standard deviation of the width of

the intervals. There is not much practical difference between the 5 confidence

intervals procedures.

TABLE 3
Confidence Intervals for OT Failure Rate of a New System

K= 4, 311 = 0.004, x~l = 1000, Co1- = 0.016
100 Replications

Level 80% 90% 95%
Interval Proc. Coverage Width Coverage Width Coverage Width

Mean S.D. Mean S.D. Mean S.D.

Asymptotic 82 0.023 0.009 87 0.030 0.011 91 0.035 0.013
Normal
Bootstrap I (2000 Replications)

Normal B. 84 0.024 0.009 89 0.031 0.012 91 0.037 0.014
SE
Percentile 82 0.023 0.009 89 0.030 0.012 93 0.036 0.014
Bootstrap 11 (2000 Replications)
Normal B. 84 0.024 0.009 89 0.031 0.012 91 0.037 0.014
SE
Percentile 81 0.023 0.009 90 0.030 0.012 93 0.036 0.014

BootstrapI: Di(b) - Poisson mean di; Wi(b) - Poisson mean wi, i = 1,...,10

Bootstrap I1: Di(b) - Poisson mean Sixi; Wi(b) - Poisson mean Sik'Yi i = 1,...,10
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Model II: A Variable/Adaptive Changeover Multiplier

This next model generalizes the previous setup by allowing for possible

variability in the DT-OT multiplier, ic; we permit the training data sets,

i = 1, 2, ... , I, a chance to reveal their appropriate ic-variability: each training

data set is thought of as having its own Kc-value, each a sample from a

population with mean and variance to be estimated. If the variability of this

population is sizable then the predictability (and usefulness) of the relation is

questionable. We again assume {Di} are independent Poisson random

variables with mean Sixi, and we let {Wi}, number of failures during OT, to

be independent random variables. The conditional distribution of Wi, given

Zi, is Poisson with mean wyi = 8iZlyi where Zi is conveniently taken to be a

gamma-distributed random variable having mean y = E[Zi] = A and shape

parameter P (its scale is a), so each system has its own individual DT-OT

multiplier; these may be close to a mean value y but not necessarily tightly

clustered around that mean. Note that this is not the same as a

partially/Bayesian analysis of Model I with ic an unknown constant described

by a gamma prior. In the present model {Wi} turn out to be independent

negative-binomial random variables that depend on the values of a and P,

which will be estimated from data. The value of FVar[ZiJ/E[Zi] allows an

analyst to get a rough idea of the cohesiveness of his data sets.

The log-likelihood is, up to irrelevant constants,

£=linL=

+_ixi dln +d i + ln E F(+ I) + flna + wi ln3i -_(P+ wi)ln[a + SiYi] (2.6)
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Analysis of simulated data shows that procedures to maximize the full

likelihood rather frequently misbehave: while a somewhat reasonable

estimate of the gamma mean, # = ,a' is usually obtained, the tendency is for

the estimate of shape, 8, to fly towards +oo, so the variance of the r-population

tends to be badly underestimated. Such misbehavior of likelihoods has been

previously noted when attempts are made to estimate one or more basic

("interest") parameters in the presence of many other ("nuisance")

parameters (this may be nature's way of telling an analyst to slow down); see

Cox and Reid (1993), (1987). A partially Bayesian way of addressing the

situation is to treat the unknown 8s as random and integrate them out

(marginalize). Simulations are used to demonstrate that this method can tend

to be reasonably reliable - much more so than is the full likelihood approach.

A similar maneuver has been employed to estimate the common mean of a

large number of different-variance normal populations, cf. Barndorff-Nielsen

and Cox (1994).

Assume {8/} are iid with a Jeffery's prior. Then to marginalize on _L carry

out

00
P{Di = di,Wi = wiI4j = ic} f Je-5i(Sx~)i e-iiyi [8iyiIK]Wi 1 4

(2.7)

di+wi
O jCw i I T +1 -~

Put the mean u = t/a. The integrated likelihood is proportional to

L(u, P3;data) =

P p00d (2.8)
__ xh-di expi_(XiiXu+(w}+#-1)lnu 1 du.

i=1 I(16) y Wi+f/ f t Yi [1 + U]di+wi
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After several algebraic steps, the log-likelihood is, up to irrelevant constants,

A(x,f#;data) = Y{, jln[j-lnF(P3) + P Inxi -6 ln yi

00 }(2.9)
+ in Jexp{-(.P}LI u + (wi +P - 1)lnu} [1+ ~i duj.

0 [ 1 •, Yi [I1+ diW

Direct numerical integration has been used in what follows.

Numerical Examples

Simulations were used to evaluate the above procedures. In each

simulation replication the DT rates, 8i, i = 1, 2, ... , I were generated

independently from a uniform distribution over [0, 101. The times xi = yi - 1

for all simulations. In the first two Cases, (A) and (B), the {Zi} values were

generated from a gamma distribution having mean y = 4 and shape

parameter P = 1. In Cases (C) and (D), the {Zi} were generated from a gamma

distribution having mean y = 4 and shape parameter P = 4.

For each data set generated, the mean and the shape parameters of the

gamma distribution are estimated using the integrated likelihood (2.9), and

alternatively the method of moments. The numerical integration uses

Simpson's rule with up to loth order difference correction for a step size h =

0.01 (cf. Hamming (1973)) over [0, 20] as implemented in A Graphical

Statistical System, AGSS.

In the present method of moments, the DT failure rate of the ith system is

estimated by Si = di/xi. The multiple of the OT failure rate for the ith system

is estimated by ki = wil/ijy. The moment estimate of the mean of the gamma

P'M =I i=1ki and the moment estimate of the shape parameter of the

gamma is

11



(fpM)2
9iM= 1 (2.10)

I-li= - AM),

No attempt has been made to adjust for the (Poisson) variability of di or wi in

the above. The integrated log likelihood is searched until parameters change

by less than 0.01. The search is started at the method of moments estimates.

Table 4 displays the results of a simulation experiment. Each simulation

has 10 replications. Each replication consists of I systems. The mean and shape

parameters of the gamma distribution are estimated using moments and

integrated likelihood. The table reports the mean (and standard deviation) of

the 10 replications of the estimates of the mean and shape parameter of the

gamma for the moment estimators and the integrated likelihood estimators

for each case.

The results displayed in Table 4 suggest the following. Both procedures

estimate the mean of the gamma relatively well; they are both biased high,

with the bias smaller for integrated likelihood. The results for 13 suggest that

the method-of-moments estimate of the shape parameter can be biased on the

low side for larger P3. The variance of the estimates suggests that the smaller

the variance of the gamma distribution (larger fl, or shape), the more difficult

it is for either of the procedures to accurately estimate the shape parameter 13.

The simulation results are not presented as at all exhaustive or definitive,

but as suggestive of procedures that might well work in practice (integrated

likelihood, but also simple moments), and others to be avoided (full

likelihood).

12



TABLE 4
Estimates of Mean and Shape Parameter of the Gamma Distribution

10 replications

Cases\Methods Mean (Std Dev) of Mean (Std Dev)
Estimates of Estimates

Integrated Likelihood Moments

AML = 4.80 (1.75) AM = 4.70 (2.45)
(A) /= 4, f3= 1, = 10 3fML = 1.52 (0.50) J3M = 1.08 (0.39)

"IIML = 4.33 (0.89) j7M = 4.37 (1.32)(B) =4, 1,=,I= 20 (2ML = 1.66 (0.71) PM = 1.22 (0.67)

1'ML = 4.55 (1.47) )M = 4.93 (1.82)
(C) 1 =4, = 4,1 = 10 "ML = 5.38 (3.10) 8M = 1.81 (0.90)

AML = 4.34 (0.90) jiM = 4.81 (1.22)(D) !•= 4, •=4, 1 = 20 (4PML = 5.23 (4.28) PM = 1.38 (0.80)

3. Likelihood-Based Pooling of Observations from Sensors with a

Particular Range-Dependent Precision

The next example describes the form of an estimate of a target item's range

from observations by several co-located sensors with range-dependent

precision. Suppose there are s (s > 1) sensors capable of detection and range

determination of iargets at various ranges. Here is a model: let

Ri = range estimate of ith sensor, i = 1, 2, ... , s;

if r is the true range of target, then suppose that all Ri are

independent and normal/Gaussian, with

E[Ri] = r
(3.1)

Var[Ri ] = air2 .

The objective is to estimate r, using all information available in the above,

which means use the fact that the variance also depends on the mean.

13



Treating r as an unknown parameter one can write down its likelihood,

given observations

R1 =xl, R2= x2, R = xs.

It is

s e-½(xi-r)2 /a2ir2L(r;xl,x2 ,'".,Xs)=JI7[ -r 32

Data i=1 ý rr (32

The log-likelihood is

r;data) (xi - r)22•(r~~data j=- 1 al2r2 s2 n

(3.3)

2= +sln(I/r).

or, if 0= 1/r

ý(O;data) -- ± (xiO - 1)2 +slnO. (3.4)=2,=1 C"2 +l0 34

Now

d& 1 s 2(xO. - i)xi s

s 2 0

-0 sx+s +s(3.5)

i---i _

so setting this equal to zero yields a quadratic equation for O:

02(yxj2 )ey._X _ _S= 0.

The acceptable solution is

14



s 2

= Xi+(Yi It Xi )2)+~~ /4s I4{XJ'
2

consequently the point estimate that uses all the information

s 22E
1 i=1M°ir= -- = (- (3.7)

S X + !] i)2+s ,

=1 v •.=1ai2 i=1 ai2

Under certain circumstances (e.g. ai = 0(0.1)) the second term inside the

radical will be much smaller than the first; neglecting it gives the weighted

estimate

± (4 H/,) ±X4/(a,?X,?)
f _- _=1__i=1(3.8)±K(( /2) ± X?/(aX,2)

i=1 i=1

It is surprising that, while the rightmost formula weights as the inverse of the

estimated/observed-range-calibrated variance, i.e. 1/(a,2/2), a natural

surrogate for 1/(ur2), then, instead of weighting the raw observations xi, it

weights their fourth power with the normalizing factor necessarily involving

weighted third powers. The accuracy of these estimates should be compared to

the simple linearly-weighted estimate that recognizes true range dependence:
$ $

±xi(1/Ca2r2) ±xi/ac2
rL=i=1 _ i=1 -(3.9)

8 S1 (1/C2rr2) 1/U,2

i=1 5

15



where the unknown true range dependence that influences the variance

cancels in this (normal) dispersion model! This is independent of the form of

the range dependence, g(r) (here g(r) = r 2) provided it is the same for all

sensors. Numerical investigation shows that the linear estimate (3.9)

performs nearly optimally, and is certainly highly convenient in applications.

Numerical Illustration

We have simulated the results of observing a target by five different

sensors and then combining the results. The situation and results appear in

Table 5, and the figure provides further insights.

As expected the mle approach (3.7) generates estimates that closely

concentrate around the true mean (r = 1000); the standard error of these

estimates is smaller than those of the other two. The approximation (3.8) is a

bit high on the average (dropping a positive term in the denominator is the

reason). The properties of the linear calculation (3.9) are gratifyingly similar to

those of the mle; ease of calculation is welcome.

TABLE 5
Estimates of Range Determination by Combination

500 replications

r = 1000; o=o = 0.09; o3 4 = o5 = 0.05

Estimate: MLE Approximation Linear

Eq. Number (3.7) (3.8) (3.9)

Mean 1006.4 1068.8 991.2

Std. Dev. of Estimates 134.6 143.1 141.1

Mean Sq. Error 18118.6 25169.2 19939.9

4. Alternatives to the Circular Normal Dispersion Model: "Robust CEP"

Experience shows that in projectile (e.g. missile, gunfire) testing it is often

the case that some individual shots deviate from aim point more wildly than

described by the customary circular normal model. One way of providing a

16



model for this to guide data analyses and perform CI across the DT to OT

changeover is to stochastically mix: letting p = 1/cr 2 be a precision parameter,

think of it as being chosen randomly, perhaps (not necessarily) from shot to

shot, and then presume that the random p has a distribution and use it to

remove the condition on precision.

If we start with standard circular normal dispersion, conditional on p,

P{R > rF= (1/2)- p} = e-2 (4.1)

then when the condition is removed

P{ R > r} = Ele-2P ] = e~ )dF,().
0

Gamma Variation of the Precision Parameter

Let the variability in the precision, p, be described by the gamma (a, t)

density

dFp(x) = fp (x; a, 1)dx = e-a (=), adx; (4.2)

for which E[p] = 61/a = -, Var[p] = t1/a 2.

Then

PIR > rla,9 a2/2 + f r21"4-3)a+r 1 .+(r2/2)(.3/a). l/32
SP{R > rja,1f3} = = +•-J.(4.3)

The CEP satisfies for this distribution (which has a long or fat "Pareto tail"),

2 2•p_1•f (4.4)

This gives
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rCEP = - 21 (2V13 - 1)a (4.5)

The CEP approaches V/21n2 1/f = 1.177 as 3- o0 if j = 1, in which case there

is no shot to shot variation in precision. If we maintain the mean of the

dispersion distribution at j = 1 and reduce 13 (increase variance) 8 = 1 (and

S= 1) w e find rcEp = -'J_ = 1.414, a 20% increase; as P3 decreases further the C EP

increases indefinitely, induced by the great shot-to-shot variability.

Parameter Estimation by Likelihood

Maximum likelihood estimation of the parameters of the miss-distance

distribution (4.3) can be easily done when all miss distances of a series of n

shots are recorded: ri, r2, ... , rn. That is, none have been (prematurely) deleted

as outliers. The density function of a miss distance is

r2 _1 -_l)

fR(r;a, f;)=51 l -r.-firp ; (4.6)

the log-likelihood function is

In 2 +nlnji. (4.7)

0, 9 r)= -0+ Ii-- 1 + ,

To maximize, differentiate and set the derivatives equal to zero; solve. The

equations appear as

Og~~ ~ (f+14 n 0 (4.8,a)

or

1-32-1 11 r2  (4.8,b)

2P n.=1 1 + r8 2 -5/2
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and

& -in~l+ 2In iL "• 1 •2 i4 + 2 2 0. (4.9,a)

Because of (4.8,b) the second term allows

-~ nl r2 2 - = 1. (4.9,b)

An iterative solution of (4.8,b) and (4.9,b) is promising: start from &(0)=1,

j5(0) = 2f(0)(21/&(0) - -l/(rMED)22 where FMED = median of the ordered miss

distances. Use of Fisher information or bootstrapping will furnish standard

errors of estimates.

Modeling DT-OT Miss-Distance Data Combination

A convenient approach to represent the difference between DT and OT

miss distances in the current context is to utilize a proportional hazard or

Lehmann alternative device. If RD(RW) are respectively location errors or

shot shot deviations for DT and OT we put in (4.3) for the DT dispersion

P{Rw > rla,P}= (P{RD > rla,1)K

: 1 +( ) .J/ (4.10)

1 + +(ra2/2);5.1/p l

The corresponding CEP turns out to be

rCEP = - 1) (4.11)

so here ic turns out to be small if there is pronounced degradation of precision

in OT over that in DT.
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The density of OT miss distances is seen to be

fw (r; o, llc =0 + r2 -1 r~f• )p - 7C (4.12)

(2

DT-OT Data, and Parameter Estimation

Suppose we have DT miss-distance data from system i, i = 1, 2, ... , I,

denoted by ri (DT) = ui,,, j = 1, 2, ... , ni, and corresponding OT miss distances,

ri2k(OT) = vij, j = 1, 2,'..., mi. Under Model I assumptions, i.e. a fixed

(unknown) ic, the likelihood is

i (fli+1) Mi 1

L(E,1,ic;data)= n Uj A_.+1 'Th I pt _(4_ .j
i=1 1  2 f3 ) 2 (413

dropping factors independent of parameters. Hence the log-likelihood is

t(-3, f3ic;data) = + 1)ln +Uij-pil--J--(I.iK+ 1) ln l +1+P2i-
---- = j=l k,2 f)=1

(4.14)

+ IIn i + I(lnhi + ln-K)].
j=1 k=1

From this,

cj =_i + 1 ni (•i A c + 1) mi ini , 0
_ _-j ( vik - _ =+ 0  (4.15,a)

Ui A k=1 I + j-"p/i pA i

or

+= I~n• (f iK + 11Mi V.
p1i u++M (Uij +-_ Vik 1 (4.15,b)

Pi ni+mi L 2~3 j=*1+T-- /fi 21+i k=-1 + --- i/li2
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I - Y,( u;1Adp+ 2l+ Ai 2/p3 1=1 -1 _l

"k/ =lK 2 Pi)/P+ 27 Uf3ij "ij=1 ( + Uij(4.16,a)
mi 1+li 5 1// + ( i•' l Vi1
kicl Vik - 1 1 vi"k "5ji = 0

-k=1 (n 1+ 2 Pi 2A k=-2 fl

Because of (4.15,b) the second term allows

1 =. 1 ni ln 1 + L ij A M1n V

PinI+n4 1 I + CI2 (4.16,b)

= -8 1lnl+- J±i -=0. (4.17)

i=1 k=1 2

Thus,

PI In(,+ vik-.

=i=1 k=1 . 2 (4.18)

,mi
i=1

An iterative solution of (4.15,b), (4.16,b) and (4.18) is promising: start from

Am0 = 1, pi(O) = 2/[median(ri,nj,..-,ri,n)]2 and then solve for k(O) using (4.18).

Notice that a Model II version of the present setup can be explicitly carried

out: if the mixing distribution is gamma, as before, all necessary integrals

come out in closed form and the analysis carried forward. This work must be

postponed for the present.

Numerical Example

Suppose there is historical data on 5 similar systems. Each system has 20

observations during DT, and 20 observations during OT. Odd-numbered

systems have (P, P5) = (0.5, 1). Even-numbered systems have (P, 5) = (1, 2).
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The common K = 0.8. Figures 2- 4 present results from 500 replications of a

simulation: "data" were sampled from the above. model and the parameters

estimated. Figure 2 presents histograms for the estimate of (fl, p) for the odd

numbered systems, and Figure 3 presents histograms for estimates of (/3, p) for

the even numbered systems. All estimates result from the iterative schemes

of (4.15,a) - (4.18). Figure 4 presents a histogram of estimates of K. The

estimates appear well-behaved in that their histograms cluster well around

the true (here known) values, doing so in an appropriately normal fashion.

5. Discussion

The present paper examines a selection of problem types typical of the

testing environment. Emphasis is placed on the issue of borrowing

information from the DT period to strengthen decisions concerning OT; this

can be useful to inform the decision maker of the advisability of the

immediate initiation of OT. Some attention is also given to auxiliary

information, i.e. with respect to shot-to-shot variability change with range,

and the occurrence of "fat-tailed" outlier-prone shot dispersion distributions.

We plan to further address such problems in future.
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